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Abstract. The Hamiltonian dynamics of the classicalϕ4 model on a two-dimensional square
lattice is investigated by means of numerical simulations. The macroscopic observables are com-
puted as time averages. The results clearly reveal the presence of the continuous phase transition
at a finite energy density and are consistent both qualitatively and quantitatively with the predic-
tions of equilibrium statistical mechanics. The Hamiltonian microscopic dynamics also exhibits
critical slowing down close to the transition. Moreover, the relationship between chaos and the
phase transition is considered, and interpreted in the light of a geometrization of dynamics.

1. Introduction

The study of the interplay between microscopic, deterministic dynamics and macroscopic
statistical behaviour of large Hamiltonian systems is an old subject which dates back to
Boltzmann. This subject has mainly been approached by bearing in mind the problem
of the dynamical foundations of equilibrium statistical mechanics. In this framework the
so-called ergodic problem is the central point: dynamics is studied in the perspective of
proving ergodicity and mixing, thus giving a sound foundation to equilibrium statistical
mechanics. Despite many efforts in ergodic theory, this goal remains distant, ergodicity and
mixing having been proved only for abstract systems such as the Sinai billiard.

However, a different approach is possible: instead of making a statistical assumption
and then looking for its justification in the properties of the microscopic dynamics, one can
consider dynamics from the very beginning. In practice, instead of considering a particular
Hamiltonian system and trying to prove that its dynamics is mixing, one can observe the
actual dynamical evolution of the system and measure the time averages of the dynamical
observables of interest. In this way the statistical behaviour emerges directly from the
dynamics, and one can wonder whether this behaviour is consistent with the predictions
of statistical mechanics. In general, such an approach needs a tool that was not available
at Boltzmann’s times, i.e. a fast computer. In fact, this approach was pioneered by Fermi
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et al [1], who performed, around 1950, the first numerical experiment on the relationship
between dynamics and statistical mechanics, using one of the first computing machines, the
MANIAC computer at Los Alamos.

The conceptual point of view adopted in this work is that of Fermiet al. We consider
the dynamics from the very beginning and look at the statistical properties as emerging
from the dynamics itself. The main aim of this work is to show that a dynamical approach
is worth and can provide some genuinely new understanding of phenomena that are usually
treated in the framework of equilibrium statistical mechanics, like phase transitions. We
argue that some of the information that is present in the dynamics of a Hamiltonian system,
and that is thrown away at the beginning of the statistical-mechanical description, is relevant
to the cooperative phenomena that show up in connection with the phase transition. This
means that the relevance of dynamics in this context might go well beyond the foundational
aspects related with the ergodic problem.

In particular, by studying the dynamics of a paradigmatic system (belonging to the
universality class of the two-dimensional Ising model), theϕ4 model on a two-dimensional
lattice, we are able to show that the dynamical description is not only consistent with
the statistical-mechanical results, but also that a Hamiltonian description of dynamical
phenomena like the critical slowing down is possible. Moreover, we suggest that a
geometrization of Hamiltonian dynamics based on simple tools of Riemannian geometry—
originally introduced to describe chaotic dynamics [2–8]—can provide a global description
of the dynamical properties that are relevant to the statistical behaviour. We argue that
most of these properties are indeed the consequence of the actual geometric structure of the
manifolds where the motion takes place. Hence, geometry can not only be a useful tool in the
theory of chaos, but hopefully can also provide the correct language to bridge microscopic
dynamics and macroscopic statistical behaviour which is still lacking. In particular, phase
transitions might be seen as the consequence of some major change in the geometric or
even in the topologic structure of the ‘mechanical’ manifolds [9]. Thus, dynamics can
introduce new concepts and tools in statistical physics. In our opinion these tools—here
applied to a ‘standard’ statistical-mechanical system—might prove useful both on conceptual
and practical grounds also dealing with ‘non-standard’ topics in statistical physics, as the
emerging field of phase transitions in finite systems (clusters, polymers, proteins) or long-
studied but still unsolved problems such as the dynamics and statistical mechanics of glasses
and more generally disordered or frustrated systems.

Several other works have recently addressed the problem of the relevance of microscopic
Hamiltonian dynamics to phase transitions, in particular in the framework of mean-field-
like models [10] and more generally as far as long-range couplings among particles
are considered [11]. Moreover, there is now a renewed interest in microcanonical
thermodynamics, both on general aspects [12, 13] and on phase transitions [14, 15].

This paper is organized as follows. In section 2 we discuss some general aspects of the
problem, then in section 3 the model and the relevant dynamical observables are introduced.
Section 4 is devoted to a discussion of the results of the dynamical simulations. In section 6
we briefly recall the main points of the Riemannian theory of Hamiltonian dynamics and
then we discuss the peculiar geometric properties of the two-dimensionalϕ4 lattice model.
Finally, in section 7 we draw some conclusions.

2. Hamiltonian dynamics and phase transitions

The dynamical aspects of equilibrium phase transitions are usually approached assuming
from the outset the formalism of canonical equilibrium statistical mechanics. Dynamics is
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introduced onlya posteriori, and usually use phenomenological, nondeterministic dynamics,
e.g. Langevin dynamics [16].

As already stated in the introduction, our approach is different. Given a Hamiltonian
system which exhibits a phase transition according to equilibrium statistical mechanics, we
wonder what its dynamical behaviour is when it is studied as a natural dynamical system,
i.e. associatinga priori to the system a deterministic (Hamiltonian) dynamics. Accordingly,
thermodynamic quantities will be obtained as time averages along the dynamical trajectories,
whence—assuming ergodicity at least for the ‘usual’ thermodynamic observables (see [13]
for recent results on the dependence of ergodic behaviour on the choice of the observable)—
such quantities will be equal tomicrocanonicalaverages, whereas second-order equilibrium
phase transitions are usually studied within thecanonical ensemble.

The two ensembles are equivalent only in the thermodynamic limit, thus the
phenomenology observed in finite systems, as systems considered in numerical simulations
necessarily are, might be different. To give only one example, let us consider the
phenomenon ofergodicity breaking, i.e. the fact that ergodicity might no longer hold in the
whole phase space but only in disjoint subsets of it. Such a phenomenon is indeed tightly
related to phase transitions; in fact, when it happens, one may observe, as a consequence, a
symmetry breaking, as in usual phase transitions. But ergodicity breaking is a more general
concept than symmetry breaking, in fact one can recognize ergodicity breaking also as the
origin of those phase transitions which do not correspond to the breaking of an evident
symmetry of the Hamiltonian (for example in spin glasses) [17]. In the canonical ensemble,
ergodicity can be broken only in the thermodynamic limit, while in the microcanonical
ensemble, in principle, there might be ergodicity breaking also in finite systems. Ergodicity
being a dynamical property, we think that a dynamical approach is particularly appropriate
to study such a phenomenon.

In the following we shall present in detail a dynamical study, performed by means
of numerical simulations, of the so-calledϕ4 lattice model withZ2 symmetry. The first,
preliminary, goal of such a study is to show that the dynamical phenomenology is consistent
with the usual statistical description (the model exhibits a continuous phase transition
which belongs to the universality class of the Ising model). The main results concern
intrinsically dynamical properties, i.e. time correlation functions and Lyapunov exponents,
and suggest interesting developments. In particular, two facts emerge: (i) the possibility
of a Hamiltonian (i.e.ab initio) description of critical dynamics aspects like the critical
slowing down, and (ii) a tight relationship between thelocal instability of the dynamics in
phase space (characterized by the Lyapunov exponent and the related geometric observables
discussed in section 6) on the one side and theglobal phenomenon of the phase transition on
the other side. It is worth noticing that a peculiar behaviour of the temperature dependence of
the Lyapunov exponent close to a phase transition (actually a Kosterlitz–Thouless transition)
was observed for the first time by Butera and Caravati in 1987 [18].

A more detailed discussion of the above-mentioned aspects as well as a discussion of
the results can be found in [19].

3. Model and dynamical observables

Let us consider a discretized (lattice) version of the classicalϕ4 field Hamiltonian, which
reads as

H =
∑
i

[
1

2
π2
i +

J

2

d∑
j=1

(ϕi+j − ϕi)2− 1

2
m2ϕ2

i +
λ

4!
ϕ4
i

]
. (1)
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According to equilibrium statistical mechanics, the system described by the Hamiltonian
(1) has a critical point at finite temperature provided thatd > 1. In the following we will
restrict ourselves to the cased = 2; the cased = 3 has been considered elsewhere, together
with the cases of O(n)-invariantϕ4 models [20].

3.1. Dynamics and thermodynamic observables

Our dynamical approach to the model defined by the Hamiltonian (1) is based on the direct
solution of the equations of motion—Hamilton’s equations—that read as

ϕ̇i = πi

π̇i = J
d∑
µ=1

(ϕi+µ + ϕi−µ − 2ϕi)+m2ϕi − 1

3!
λϕ3

i .
(2)

The numerical integration of the 2N equations (2) has been performed by means of a third-
order bilateral symplectic algorithm [21]. The parameters have been chosen as follows:
J = 1, m2 = 2, λ = 0.6. The average of any observable is defined as a time average, i.e.

〈f 〉 = lim
t→∞

1

t

∫ t

0
f (ϕ(τ), π(τ))dτ. (3)

In practice, such an average is evaluated by means of a discrete sampling off .
As already discussed in section 2, even if we cannot rigorously prove that the

invariant ergodic measure associated with the Hamiltonian dynamics of our system is the
microcanonical measure, the microcanonical ensemble is the statistical ensemble which
is naturally associated with Hamiltonian dynamics nevertheless, for it is defined directly
from the dynamics itself. Thus, in defining the dynamical observables which represent the
thermodynamic properties of our model, we shall consider the microcanonical ensemble.

The phase-space density of the microcanonical measure can be written as [22]

%micro = 1

ω
δ(H(ϕ, π)− E) (4)

where the normalizationω is given by

ω =
∫
δ(H(ϕ, π)− E) dϕ dπ (5)

and dϕ dπ is a shorthand for dϕ1 . . .dϕN dπ1 . . .dπN .
The entropyS is defined once the external parameterE (the energy of the system)

is assigned. Different definitions ofS can be given, all of which are equivalent in the
thermodynamic limit. The two common definitions are (we setkB = 1)

S�(E) = log�(E) (6)

Sω(E) = logω(E) (7)

where

�(E) =
∫
ϑ(H(ϕ, π)− E) dϕ dπ. (8)

The temperature is defined thermodynamically as

β = 1

T
= ∂S(E)

∂E
(9)

in the above definition,S can denote eitherS� or Sω, whence we have two different
definitions of temperature,T � and T ω. Again the two definitions are equivalent in the
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thermodynamic limit. Let us now limit ourselves to the case of natural dynamical systems,
i.e. to Hamiltonian systems withN degrees of freedom whose Hamiltonian can be written
as

H =
N∑
i=1

π2
i

2m
+ V (ϕ) = K + V (10)

then the temperature can be expressed in terms of the kinetic energy as follows [23]:

T � = �

ω
= 2

N
〈K〉 (11)

T ω =
[(

2

N
− 1

)
〈K−1〉

]−1

. (12)

It is worth noticing that for natural dynamical systems definition (11) also coincides with the
definition of temperature in the canonical ensemble. In what follows, unless explicitly stated
otherwise, we shall adopt this definition of temperature and we shall drop the superscript
�, i.e. T = T �. A more general approach to microcanonical thermodynamics [12] has
been recently introduced, which allows us to find new expressions for thermodynamical
observables. Anyhow, definition (11) is the best suited for numerical simulations in the
case of natural systems [13].

Another thermodynamic quantity to be computed in our simulations is the constant-
volume specific heat, defined as

1

Cv
= ∂T (E)

∂E
. (13)

From the definition and equation (11) it follows that [23]

cv = Cv

N
= [N − (N − 2)〈K〉〈K−1〉]−1 (14)

in the thermodynamic limitN → ∞ this expression for the specific heat reduces to the
well known Lebowitz–Percus–Verlet formula [24],

cv = 1

2

(
1− N

2

〈K2〉 − 〈K〉2
〈K〉2

)−1

(15)

which is almost universally used to compute the specific heat in molecular-dynamics
simulations [26]. Notice that equation (15) is derived from an asymptotic expansion of
the microcanonical fluctuations in terms of the canonical ones, thus it is only valid in the
limit of large N . In contrast, formula (14) is exact atany value ofN . Hence, this is the
correct expression to be used in a finite system.

Finally, we will consider the order parameter, i.e. the ‘magnetization’

〈ϕ〉 = 1

N

〈 N∑
i=1

ϕi

〉
. (16)

4. Results of the dynamical simulations

We now turn to the problem of detecting the phase transition in our latticeϕ4 Hamiltonian
system. According to the thermodynamic definition, we must look for a singularity of the
thermodynamic observables as functions of the energy—or better as a function of the energy
densityε = E/N which remains finite asN → ∞ and facilitates the comparison of the
results obtained at different lattice sizes. In particular, we look for a singularity incv(ε).
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Besides, being the transition associated with the spontaneous breaking of theZ2 symmetry,
we will look for the appearance of a nonzero order parameter, i.e. for a nonvanishing value
of the average magnetization〈ϕ〉.

4.1. Binder cumulants

In the canonical ensemble, a phase transition may occur only in the thermodynamic limit. As
long asN is finite, all the thermodynamic quantities are regular functions of the temperature,
and ergodicity and symmetry are not broken. Nevertheless, some marks of the transition
clearly show up also in a finite system. The specific heat does not diverge, but exhibits
a peak—whose height grows with the size of the system—at a temperatureT cvc (N), while
the order parameter is expected to be vanishing in the whole temperature range at any
finite value ofN . Nevertheless, this is true only in principle: in practice, for example in
a canonical Monte Carlo simulation, where the simulation time is necessarily finite, the
system is trapped in one of the two phases for a ‘time’ which grows exponentially withN

[17], and one observes a fictitious symmetry breaking at a temperatureT
ϕ
c (N). The latter

temperature in general does not coincide withT cvc (N), even if

lim
N→∞

T cvc (N) = lim
N→∞

T ϕc (N) = T∞c . (17)

In the microcanonical ensemble ergodicity breaking may also occur at finiteN , hence
one could expect a ‘true’ critical energy to be defined also at finiteN . No rigorous theoretical
result is at disposal as far as this aspect is concerned. Nevertheless, it is reasonable to
expect—and this is indeed what is observed—that the actual behaviour of the thermodynamic
functions will be similar to the canonical case, at least asN is sufficiently large. In particular,
we expect the specific heat to exhibit a peak at a critical energy density which is a function
of N , and the order parameter to be nonvanishing below another critical energy, again
depending on the size of the system.

In the framework of the statistical theory of critical phenomena, finite-size scaling [27]
allows us to estimate the critical properties of the infinite system from the values of the
thermodyamic observables in finite samples of different sizes. In particular it is possible
to locate the critical point by means of the so-calledBinder cumulants[28]. The Binder
cumulantg is defined for our system as

g = 1− 〈ϕ
4〉

3〈ϕ2〉2 . (18)

In the disordered phase the probability distribution of the order parameter will be nearly
Gaussian with zero mean, henceg ' 0. At variance, at zero temperature (or energy), when
ϕi ≡ ϕ0 with no fluctuations,g = 2

3. At different sizes of the system,g(T ) will decay from
2
3 to 0 with different patterns. It is remarkable that the value ofg at T∞c is independentof
N , providedN is large enough for the scaling regime to set in, hence the critical point is
given by the intersection of the different curvesg(T ) for different values ofN . In principle,
two different sizes are sufficient to locate a transition; in practice, owing to the unavoidable
numerical errors which affectg, it will be necessary to consider three or more values of
N . Moreover, the value ofg at the critical point, usually referred to asg∗, is a universal
quantity; for a simple proof see for example [27].

The theory behind the Binder cumulant method is totally internal to canonical statistical
mechanics: to our knowledge, no extension of this theory to the microcanonical ensemble
exists. Nevertheless we will adopt the pragmatic point of view of assuming its validity as a
numerical tool also in our dynamical simulations, and our operative definition of the critical
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Figure 1. Binder cumulantsg (18) versus energy densityε for different sizes of the system.
The symbols denote respectivelyN = 102 (full circles), N = 202 (open circles),N = 302

(full triangles),N = 502 (open triangles). The vertical dotted line marks the estimated value of
εc ' 21.1. The inset shows a magnification of the transition region.

energy densityε∞c will be the intersection point of the curvesg(ε) at differentN . The
consistency of the method will be checkeda posteriori. In the following, unless explicitly
stated otherwise,εc andTc will denote respectivelyε∞c andT∞c .

The results forg(ε) at different sizes for the two-dimensional latticeϕ4 model are shown
in figure 1. The crossing of the various curves atεc ' 21.1 is evident.

4.2. Thermodynamical observables

4.2.1. Temperature. The temperature of the two-dimensionalϕ4 system, numerically
determined according to equation (11), is plotted in figure 2. Notice the change in the
convexity of the functionT (ε) at ε = εc.

In figure 3 a comparison between the temperatures computed according to the two
definitions (11) and (12) is shown. It is evident that already in a 10× 10 lattice the two
temperatures are practically identical.

In figure 4 the Binder cumulants are plotted versus temperatureT to locate the critical
temperatureTc. We see that thisTc is consistent withT (εc).

4.2.2. Specific heat.The specific heat of the two-dimensionalϕ4 system is plotted versus
energy density in figure 5. The asymptotic values of the specific heat in the limitsε→ 0 and
ε→∞ are exactly known. In fact at low energies the anharmonic terms in the Hamiltonian
can be neglected, the system behaves as a collection of harmonic oscillators andcv ≈ 1. In
the high-energy limit the quadratic terms in the potential are negligible with respect to the
quartic ones, whencecv ≈ 1

2 + 1
4 = 3

4. At intermediate energy densities, a neat peak shows
up whose position is close toεc. The height of the peak grows withN .

4.2.3. Order parameter. Let us turn to the behaviour of the order parameter〈ϕ〉. In
principle, a nonzero value of〈ϕ〉 is the characteristic signal of the breaking of theZ2
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Figure 2. TemperatureT versus energy densityε. Symbols as in figure 1.

Figure 3. Comparison of the two different definitions of temperatureT = T �—equation (11),
full circles—andT = T ω—equation (12), squares—at three different lattice sizes:N = 102 (full
circles),N = 202 (open circles),N = 302 (full triangles). The full line is the lineT ω = T �,
the dotted vertical line marks the estimated value ofTc (see figure 4).

symmetry, which is in turn a consequence of ergodicity breaking. In practice, as long as
a finite system is considered, the situation is more subtle. We have already observed that
in a canonical ensemble, where the temperature is fixed, ergodicity can only be broken in
the thermodynamic limit, hence the eventual appearance of a nonzero order parameter is a
consequence of the necessarily finite observation time. In order to obtain reliable results the
standard procedure is then to compute〈|ϕ|〉 rather than〈ϕ〉; in this way one has a quantity
whose average is always nonnegative, and that coincides with the ‘true’ order parameter
asN → ∞. Obviously in the symmetric phase this quantity, at finiteN , is nonzero: its
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Figure 4. Binder cumulantsg (18) versus temperatureT . Symbols as in figure 1. The vertical
dotted line marks the estimated value ofTc ' 17.65. The inset shows a magnification of the
transition region.

Figure 5. Specific heatcv versus energy densityε. Symbols as in figure 1.

amplitude will decrease as 1/
√
N . This is precisely the behaviour of our numerical results

reported in figure 6.
In the microcanonical ensemble the situation is more complicated, in fact ergodicity

breaking is no longer forbidden at finiteN , hence a nonzero value of〈ϕ〉 might be either a
finite-time artefact or a ‘true’ signal of symmetry breaking. Anyhow, the mere observation
of the result is not sufficient to discriminate between these two alternatives. The order
parameter (the ‘true’ one, whose absolute value is taken onlyafter the average for graphical
reasons) is reported in figure 7. We see that at eachN there is a value ofε below which
the symmetry appears to be broken, and the value of〈ϕ〉 seems to move almost abruptly
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Figure 6. Absolute magnetization〈|ϕ|〉 versus energy densityε. Symbols as in figure 1.

Figure 7. Magnetization〈ϕ〉 versus energy densityε. Symbols as in figure 1.

from zero to a finite value. These ‘critical’ energy densities are the closer toεc the larger
N is.

4.3. Critical behaviour

The classical latticeϕ4 model, whose Hamiltonian is invariant under a discreteZ2 symmetry,
belongs to the universality class of the Ising model.

Our goal is not to obtain a precise measurement of the critical exponents, but only to
check the consistency of our dynamical results with the statistical theory. The fact that the
ϕ4 theory belongs to the Ising universality class is a great advantage, because the critical
exponents of the Ising model in two dimensions have been computed exactly: in particular,
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Figure 8. Scaling behaviour of the order parameter in the two-dimensionalϕ4 model. Symbols
as in figure 1; only 202, 302 and 502 lattices are considered. The dotted line is the exact result
for the Ising model, i.e. the power law|T − Tc|1/8.

the order parameter critical exponent isβ = 1
8 and the specific heat one isα = 0 (the

specific heat has a logarithmic singularity). We can compare the numerical outcomes of
our simulations with the predicted Ising values in order to check whether the dynamically
simulated critical behaviour is compatible with the predictions of statistical mechanics. In
figures 8 and 9 the scaling behaviours of the order parameter and of the specific heat are
compared with the exact Ising behaviours in two dimensions. The results are clearly very
well compatible with the theory. This is a sign that the dynamical approach effectively
reproduces the thermodynamical phase transition of theϕ4 model.

5. Dynamical properties

Heretofore we have shown that the outcomes of the dynamical numerical simulations are
perfectly consistent, both qualitatively and quantitatively, with the theoretical expectations
regarding the phase transition of theϕ4 model. Although obtained through dynamics, all
these results deal with equilibrium time averages: the time variable, even if not eliminated
from the very beginning as in the statistical approach, has been integrated out in the
averaging procedure. Now, we can also wonder whether there are intrinsically dynamical
properties of our system that are relevant for the phase transition itself. Moreover, since
from our point of view ergodicity breaking has its origin in the dynamics, we can try to
understand what features are associated to a Hamiltonian ergodicity breaking.

5.1. Time correlation functions

The first dynamical property that we are going to study is the dynamics of the order
parameterϕ(t). A qualitative understanding of what is going on is already provided by
the time seriesϕ(t) itself: some examples are reported in figure 10 for various values ofε,
in the case of a 20× 20 lattice. However, much more interesting information is contained
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Figure 9. The same as in figure 8 for the specific heat. Here the dotted line is the logarithmic
behaviour.

in the time correlation functions of the order parameter,

Cϕ(τ) = 〈ϕ(t)ϕ(t + τ)〉〈ϕ2(t)〉 (19)

some of these functions are plotted in figure 11. We immediately note that close to the
critical energy—and indeed very close to the ‘finiteN ’ critical energy where ergodicity
appears to be broken according to figure 7—the shape of the correlation function changes
rather sharply from an oscillatory pattern with a superimposed decay to a pattern indicating
that the values ofϕ(t) are correlated over an extremely long period of time. Such a
phenomenon is obviously reminiscent ofcritical slowing down. The latter is a feature
of the local† phenomenological dynamical evolutions, for example Monte Carlo dynamics,
constructed in order to have the Boltzmann distribution e−βH as limiting invariant probability
distribution, when the system described byH is close to a continuous phase transition. The
usual explanation for the critical slowing down is that it is a consequence of the divergence
of the static correlation length at the phase transition. However, we are now considering a
deterministic Hamiltonian microscopic dynamics and not a phenomenological Monte Carlo
dynamics, hence our results clearly show that some kind of critical slowing down also
exists in the microscopic natural dynamics. Something similar, i.e. the development of low-
frequency collective oscillations, was observed in a planar mean-field Heisenberg model
close to criticality [10]. This result suggests that a Hamiltonian description of critical
slowing down is possible and it might be very useful in dynamically understanding the
phenomenon of ergodicity breaking (the study of a simple model which provides a first step
towards this Hamiltonian approach to critical slowing down is presented in [19]).

In order to obtain synthetic information from the time correlation functions, let us define
a characteristic timeτ as follows:

τ =
∫ t0

0
Cϕ(t) dt (20)

† There are indeed ‘smart’ dynamics which greatly reduce, or completely eliminate, the critical slowing down;
the common feature of these dynamical rules is that of being highly nonlocal [30].
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Figure 10. Temporal behaviour of the order parameterϕ(t) for a 202 lattice at different values
of ε: from top to bottom,ε = 10, 20, 22.5 and 35.

where t0 is the time whereCϕ has its first zero. Such a definition is to a large extent
arbitrary, nevertheless it provides a relevant timescale whether the correlation function is
oscillatory with typical frequencyω and with only a weak damping—as it happens at low
energy—in which caseτ ≈ ω−1, or in the case of an exponentially decaying correlation
with inverse time constantγ , in which caseτ ≈ γ−1. The values ofτ computed with
Hamiltonian dynamics are reported in figure 12. The striking result is that the characteristic
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Figure 11. Time autocorrelation function of the order parameterϕ(t) for the same lattice and
at the same energies as in figure 10.

time is rapidly growing (notice the logarithmic vertical axis) as the system approaches the
phase transition: the position of the peak is close to the ‘finiteN ’ critical energy.

5.2. Chaotic dynamics

The latticeϕ4 model is a nonintegrable dynamical system. In the two limitsε → 0
and ε → ∞, the system is integrable. The two integrable limits respectively represent
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Figure 12. Characteristic timeτ of the order parameterϕ(t) (see text). Open circles: 102

lattice, full circles: 202 lattice.

a system of coupled harmonic oscillators and a system of independent quartic oscillators.
The dynamics will always be chaotic in the whole energy range. Nevertheless, in analogy
with other nonlinear oscillator systems, we expect that as the energy density is varied there
exist different dynamical regimes characterized by different behaviours of the Lyapunov
exponentλ. In particular, the following questions naturally arise. Is there any peculiar
behaviour of the Lyapunov exponent in correspondence with the phase transition? Is there
any transition between different chaotic regimes in theϕ4 lattice model, and, if yes, is there
any relationship between these different dynamical regimes and the thermodynamic phases?

There are not yet general and conclusive answers to these questions. Even if the
study of a possible relation between chaos and phase transitions is a rather recent issue,
which started with the already mentioned pioneering work by Butera and Caravati [18],
very different results have already appeared in the literature, ranging from the claim of the
discovery of a ‘universal’ divergence inλ as the system approaches criticality in a class of
models describing clusters of particles [31], to the observation that the Lyapunov exponent
attains its minimum in correspondence with the phase transition in Ising-like coupled map
lattices [32], to the apparent insensitivity to the liquid–solid phase transition of the Lyapunov
spectra of hard-sphere and Lennard-Jones systems [15]; for other recent results on first-order
transitions see [33].

More recently, some very interesting results have been obtained concerning mean-field-
like models, in particular globally coupled rotators. Numerical results [34], though of
not easy interpretation due to strong finite-size effects, indicate that in these systems, that
undergo a mean-field phase transition at a critical energy densityεc, the Lyapunov exponent
vanishes in the whole disordered phase, whereas it is positive in the low-energy (ordered)
phase. Such a result has been theoretically confirmed in a very recent work [35]. Since the
latter work is based on the application of the theoretical tools described in section 6, we
will discuss there its results.

Our simulation results are plotted in figure 13. The first numerical evidence is that there
is a strong dependence ofλ on N , which is peculiar of the presence of a phase transition.
Moreover, at largeN a maximum ofλ(ε) develops which eventually seems to move towards
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Figure 13. Lyapunov exponentλ versus energy densityε. Symbols as in figure 1.

the critical energy density. Nevertheless no sharp, or singular, transition between different
behaviours is found nearεc, at variance with the three-dimensional case [20]; it is possible
that such a sharp transition shows up asN → ∞, but no clear indications of this fact
are provided by our results. Nevertheless the behaviour ofλ(ε) in the regionε < εc is
very different from that of the thermodynamically disordered region, i.e. in the formerλ

rapidly grows withε, while in the latter it has a quasiflat shape (which is expected to
become a decrease asε is large enough, because the high-energy limit is an integrable limit
for the model). This behaviour is more clearly shown in figure 14 where a wider energy
range is considered and logarithmic axes are used. This suggests that the phase transition
has a dynamical counterpart in a passage between different chaotic regimes. However—at
present—this statement cannot be formulated in a conclusive way, mainly because there is
no clear and unique way to define and characterize a transition between different chaotic
regimes (a recent improvement towards an unambiguous characterization of this kind of
transitions can be found in [13]).

Moreover, numerical experiments show that the detailed behaviour of the Lyapunov
exponent close to the transition does not show ‘universal’ features, i.e. it depends on the
details of the Hamiltonian: in contrast, in the low-energy range also for theϕ4 model we
haveλ ∝ ε2 that is the same behaviour observed in most, if not all, of the systems of coupled
oscillators. Hence, it is still unclear which feature of theε-dependence of the Lyapunov
exponent has to be related with the phase transition. An exception is the already-mentioned
case of the mean-field rotators model [34], where the order-disorder phase transition finds
its counterpart in a chaos-order dynamical transition: this rather counterintuitive fact can
be explained theoretically [35] and is likely to be a peculiarity of mean-field models. We
shall return to this issue in the following, in particular in section 6 where we will consider
geometric properties which are strictly related with chaotic dynamics, and which, indeed,
exhibit a much clearer behaviour nearεc.
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Figure 14. The same as in figure 13 in a wider energy range and using logarithmic scales. The
broken line is the power lawλ ∝ ε2.

6. Geometry of dynamics in theϕ4 model

Let us turn to the geometrization of the dynamics and its relations with the dynamical
description of the phase transition. We will not go into detail, we recall only the notations
and main results: all the details can be found in [8] and references therein.

The geometrical formulation of the dynamics of conservative systems was first used
by Krylov in his studies on the dynamical foundations of statistical mechanics [36] and
subsequently became a standard tool to study abstract systems in ergodic theory. Several
new contributions to this subject have recently appeared [2, 3, 7, 8].

Let us briefly recall that the geometrization of the dynamics ofN -degrees-of-freedom
systems defined by a LagrangianL = T − V , in which the kinetic energy is quadratic in
the velocities:

T = 1
2aij q̇

i q̇j (21)

stems from the fact that the natural motions are the extrema of the Hamiltonian action
functional SH =

∫
L dt , or of the Maupertuis’ actionSM = 2

∫
T dt . In fact also the

geodesics of Riemannian and pseudo-Riemannian manifolds are the extrema of a functional:
the arc-length̀ = ∫ ds, with ds2 = gij dqi dqj , hence a suitable choice of the metric tensor
allows the identification of the arc-length with eitherSH or SM , and of the geodesics with
the natural motions of the dynamical system. Starting fromSM the ‘mechanical manifold’
is the accessible configuration space endowed with the Jacobi metric

(gJ )ij = [E − V ({q})]aij (22)

whereV (q) is the potential energy andE is the total energy. A description of the extrema
of Hamilton’s actionSH as geodesics of a ‘mechanical manifold’ can be obtained using
Eisenhart’s metric [37] on an enlarged configuration spacetime ({q0 ≡ t, q1, . . . , qN } plus
one real coordinateqN+1), whose arc-length is

ds2 = −2V ({q})(dq0)2+ aij dqi dqj + 2dq0 dqN+1. (23)
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The manifold has a Lorentzian structure and the dynamical trajectories are those geodesics
satisfying the condition ds2 = C dt2, whereC is a positive constant. In the geometrical
framework, the (in)stability of the trajectories is the (in)stability of the geodesics, and it is
completely determined by the curvature properties of the underlying manifold according to
the Jacobi equation [38]

D2J i

ds2
+ Rijkm

dqj

ds
J k

dqm

ds
= 0 (24)

whose solutionJ , usually called Jacobi or geodesic variation field, locally measures the
distance between nearby geodesics; D/ds stands for the covariant derivative along a geodesic
andRijkm are the components of the Riemann curvature tensor. Using the Eisenhart metric
(23) the relevant part of the Jacobi equation (24) is [3, 8]

d2J i

dt2
+ Ri0k0J

k = 0 i = 1, . . . , N (25)

where the only nonvanishing components of the curvature tensor areR0i0j = ∂2V/∂qi∂qj .
Equation (25) is the tangent dynamics equation which is commonly used to measure
Lyapunov exponents in standard Hamiltonian systems. Having recognized its geometric
origin, in [8], it has been devised as a geometric reasoning to derive from equation (25)
an effective scalar stability equation thatindependentlyof the knowledge of dynamical
trajectories provides an average measure of their degree of instability. This is based on two
main assumptions: (i) that the ambient manifold isalmost isotropic, i.e. the components
of the curvature tensor—that for an isotropic manifold (i.e. of constant curvature) are
Rijkm = k0(gikgjm − gimgjk), k0 = constant—can be approximated by

Rijkm ≈ k(t)(gikgjm − gimgjk) (26)

along a generic geodesicγ (t); (ii) that in the largeN limit the ‘effective curvature’k(t) can
be modelled by a Gaussian andδ-correlated stochastic process. The meank0 and varianceσk
of k(t) are given by the average and the r.m.s. fluctuation of the Ricci curvaturekR = KR/N
along a geodesic:

k0 = 〈KR〉/N (27a)

σ 2
k = 〈(KR − 〈KR〉)2〉/N. (27b)

The Ricci curvature along a geodesic is defined as

KR = 1

v2
Rij

dqi

dt

dqj

dt
(28)

wherev2 = dqi

dt
dqi
dt andRij = Rkikj is the Ricci tensor; in the case of Eisenhart metric it is

KR ≡ 1V =
N∑
i=1

∂2V

∂q2
i

. (29)

The final result is the replacement of equation (25) with the aforementioned effective stability
equation which is independent of the dynamics and is in the form of a stochastic oscillator
equation [7, 8]

d2ψ

dt2
+ k(t)ψ = 0 (30)
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whereψ2 ∝ |J |2. The exponential growth rateλ of the solutions of equation (30), which
is therefore an estimate of the largest Lyapunov exponent, can be computed exactly:

λ = 3

2
− 2k0

33
3 =

2σ 2
k τ +

√
64k3

0

27
+ 4σ 4

k τ
2


1
3

(31)

whereτ = π√k0/(2
√
k0(k0+ σk)+ πσk); in the limit σk/k0� 1 one finds

λ ∝ σ 2
k . (32)

The latter result is the deep origin of the vanishing of the Lyapunov exponent in the whole
disordered phase of a mean-field rotator model [34]; in fact, in that model, the curvature
fluctuations can be analytically computed and turn out to be nonzero in the low-energy
region but vanishing in the whole high-energy phase [35], consistently with the mean-field
character of the model. At the critical energyσk is discontinuous. The work reported in [35]
is particularly important because it is the first example in which the relationship between
chaos and phase transitions is theoretically investigated within a framework which allows
analytical calculations. The power of the geometric approach is evident in that case.

It is natural to wonder whether the curvature fluctuations show any remarkable (singular)
behaviour also in correspondence with nonmean-field phase transitions. Numerical results
suggesting a positive answer to this question have already been found in the cases of planar
spin models [9] and three-dimensional O(n) ϕ4 models [20]; in correspondence with a
second-order phase transition the curvature fluctuations show a cusp-like behaviour in all
the cases considered up until now. These singular behaviours of the curvature fluctuations
have been conjectured to be a consequence of a major change in the global geometry, if
not in the topology, of the mechanical manifolds.

In the following we are going to show that also in the case of the two-dimensional
ϕ4 lattice theory the above scenario is confirmed. Moreover, we will present some results
concerning other geometric quantities, different from those defined in the framework of
Eisenhart’s metric; these results lend strong support to the topologic intepretation of the
apparently singular behaviour of the curvature fluctuations.

6.1. Curvature fluctuations with Eisenhart’s metric

In the case of the latticeϕ4 theory (1) the Ricci curvature per degree of freedom of the
Eisenhart metric is

kR = KR

N
= 2dJ −m2+ 1

N

N∑
i=1

λ

2
ϕ2
i . (33)

The time averagek = 〈kR〉 of kR is plotted versus the energy density for the two-dimensional
model in figure 15. It is evident thatk(ε) changes its convexity close toεc, hence it shares
this feature with the temperature. Anyhow in other models the shape ofk(ε) is completely
different.

What is more interesting, and, in the light of the above discussion, much more
significant, is the behaviour of the fluctuationsσ 2

k , reported in figure 16. Actually in this
figure the normalized fluctuationσk/k is reported. A cusp-like behaviour of the curvature
fluctuations is evident in correspondence of the critical energy.
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Figure 15. Average Ricci curvaturek (33) with Eisenhart metric versus energy densityε for
different sizes of the system. The symbols denote respectivelyN = 102 (full circles),N = 202

(open circles),N = 302 (full triangles),N = 502 (open triangles). The vertical dotted line
marks the estimated value ofεc. The inset shows a magnification of the transition region.

Figure 16. Normalized Ricci curvature fluctuationsσk/k with Eisenhart metric versus energy
densityε for different sizes of the system. The symbols are the same as in figure 15.

6.2. Other geometric observables

The same analysis of the time-averaged geometric quantities can be carried on also in
the framework of the Jacobi metric—equation (22). In this case the ambient space is the
accessible configuration space. We have studied the behaviour of the time average and
of the fluctuations of the scalar curvature, whose corresponding dynamical observable is
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Figure 17. Average scalar curvature〈R〉 (34) with Jacobi metric versus energy densityε for
different sizes of the system. The symbols denote respectivelyN = 102 (full circles) and
N = 202 (open circles). The vertical dotted line marks the estimated value ofεc. The inset
shows a magnification of the transition region.

[3, 19]

R = N − 1

4(E − V )2 [2(E − V )4V − (N − 6)|∇V |2]. (34)

The results are reported in figures 17 and 18. We see that also with the Jacobi metric the
average curvature seems to have a smooth behaviour nearεc, even if in the two phases the
overall behaviours of the curvature seem different; in contrast, the normalized fluctuation
shows a sharp increase near criticality. Notice that these results have been obtained for
small lattices only (up to 20× 20) hence, in analogy with the other observables, we expect
that in larger lattices this effect should be even more pronounced.

Heretofore geometry has been introduced through dynamics, by identifying the
dynamical trajectories with the geodesics of suitable manifolds.

However, other complementary approaches are also possible and interesting. Let us
consider in particular the following one, recently introduced [39] in connection with the
existence of different regimes in the dynamics of natural Hamiltonian systems. Given the
dynamics, one can study the geometry of the trajectories as curves in the phase space,
endowed with the Euclidean metric. In this way the trajectories are no longer geodesics of
any manifold. Nevertheless, being the Hamiltonian trajectories constrained on the constant-
energy hypersurface6E , the geometry of such curves carries information on the ‘shape’ of
the invariant hypersurface. Such a relation can be made precise in terms of the geometry
of 6E seen as a submanifold ofRn [19]. Let us define the curvature of the trajectory
x(t) = (ϕ1(t), . . . , ϕN(t), π1(t), . . . , πN(t)) in phase space as the generalization ton = 2N
dimensions of the curvature of a curve in the two-dimensional Euclidean plane:

κ = dτ

ds
(35)

whereτ is the unit tangent vector to the curvex(t), i.e. τ = ẋ/|x|, ands is the arc-length
induced onx by the Euclidean metric ofRn, hence ds/dt = |gradH|.
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Figure 18. Normalized scalar curvature fluctuations〈δR〉/〈R〉 with Jacobi metric versus energy
densityε for different sizes of the system. The symbols are the same as in figure 17.

Figure 19. Normalized curvature fluctuations〈δκ〉/〈κ〉 of the trajectories in phase space versus
energy densityε for two different sizes of the system:N = 102 (full circles) andN = 202

(open circles).

The time average and the fluctuations of the observableκ can be defined as usual. In
particular, the result for the normalized fluctuation〈δ2κ〉/〈κ〉 is reported in figure 19 for
the two-dimensionalϕ4 model on a square lattice. We observe that the fluctuation of this
curvature has a cusp-like behaviour in correspondence of the transition. Again we stress
that this ‘quasisingular’ behaviour is already obtained with extremely small lattices.

The phenomenology summarized above suggests that in correspondence with a phase
transition, the geometry of the manifolds underlying the dynamics undergoes a dramatic
change. The precise nature of this change is still to be understood. Nevertheless, the
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Figure 20. Synopsis of the geometric prediction of the Lyapunov exponent according to
equation (31) (full squares) and of the numerical simulation results already plotted in figure 14.

fact that the singular behaviour of the curvature fluctations shows up usingdifferent
geometric settings indicates that it is a consequence of somedeeperproperty: the topological
interpretation of these phenomena [9] is strongly supported.

6.3. Geometric observables and Lyapunov exponents

The geometric observables considered in section 6.1 can be used to estimate the Lyapunov
exponents. The result obtained applying equation (31) to the two-dimensionalϕ4 model are
reported in figure 20. The agreement between theory and simulations is qualitatively good,
but not from a quantitative point of view. A very good agreement is found only in an energy
range of about two decades just above the transition. We do not have, at present, a deep
explanation. A tentative one might involve the fact that in these models, especially close
to the transition, the manifolds might be highly anisotropic (as witnessed by the growth
of the curvature fluctuations) and thus the quasi-isotropy assumption may no longer be
valid. Moreover, finite-size effects are expected to play a significant role. However, the
nonsatisfactory agreement between theory and simulation for the Lyapunov exponent is not
a common feature of all models with phase transitions. In fact, in the case of the two- and
three-dimensionalXY models the geometric estimate of the Lyapunov exponent is in very
good agreement with the simulations [9]. Moreover, the analytical results obtained in [35]
compare well with simulations. In [20] it has also been shown that in the case ofϕ4 models
the estimate could be improved by adjusting the values of the timescaleτ in equation (31).

7. Concluding remarks

The first result of this work is that the statistical behaviour emerging from the microscopic
Hamiltonian dynamics of a two-dimensionalϕ4 model is perfectly consistent with the
predictions of equilibrium statistical mechanics, and the agreement between the two
descriptions includes critical behaviour. This means that all the tools coming from
Hamiltonian mechanics can be used to investigate phase transitions. One of the aspects that
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can be considered in this perspective is certainly the possibility of anab initio description
of critical slowing down.

A further result is that the study of intrinsically dynamical observables, as Lyapunov
exponents, reveals an intriguing relationship between the local instability properties of the
phase-space dynamics and the global phenomenon of the phase transition. In this perspective
it is worth mentioning a recently proposed approach [40] that unifies the description of
Hamiltonian dynamics with the description of its stability through a path-integral formalism:
this could be a way to relate stability properties with the phase transition from a general
point of view. Here we approached this problem via a geometrization of the dynamics based
on simple Riemannian tools. We found that the fluctuations of the curvatures of suitably
defined manifolds associated with the Hamiltonian dynamics exhibit a ‘singular’ behaviour
at the transition. This fact is coherent with the results recently found for other models
undergoing a phase transition, as the latticeϕ4 theory in three space dimensions, with both
Z2 and O(n) symmetries [20], and the classicalXY Heisenberg model in two and three
space dimensions [9, 41].

A topological conjecture has been proposed to explain this behaviour [9]: the phase
transition could be a consequence of a major topological change in the manifolds where
the dynamical trajectories live. Such a conjecture receives further support from the results
presented here, also because an apparently singular behaviour in the curvature fluctuations is
also found using different geometric settings with respect to those used in the previous works,
which were all based on the Eisenhart metric. The problem of a precise characterization of
these topological changes is still open and work is in progress in this direction (see [19] for
some preliminary results).
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